BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery
نویسندگان
چکیده
Hermansky-Pudlak syndrome (HPS) is a group of disorders characterized by the malformation of lysosome-related organelles, such as pigment cell melanosomes. Three of nine characterized HPS subtypes result from mutations in subunits of BLOC-2, a protein complex with no known molecular function. In this paper, we exploit melanocytes from mouse HPS models to place BLOC-2 within a cargo transport pathway from recycling endosomal domains to maturing melanosomes. In BLOC-2-deficient melanocytes, the melanosomal protein TYRP1 was largely depleted from pigment granules and underwent accelerated recycling from endosomes to the plasma membrane and to the Golgi. By live-cell imaging, recycling endosomal tubules of wild-type melanocytes made frequent and prolonged contacts with maturing melanosomes; in contrast, tubules from BLOC-2-deficient cells were shorter in length and made fewer, more transient contacts with melanosomes. These results support a model in which BLOC-2 functions to direct recycling endosomal tubular transport intermediates to maturing melanosomes and thereby promote cargo delivery and optimal pigmentation.
منابع مشابه
Rab9A is required for delivery of cargo from recycling endosomes to melanosomes
Melanosomes are a type of lysosome-related organelle that is commonly defective in Hermansky-Pudlak syndrome. Biogenesis of melanosomes is regulated by BLOC-1, -2, -3, or AP-1, -3 complexes, which mediate cargo transport from recycling endosomes to melanosomes. Although several Rab GTPases have been shown to regulate these trafficking steps, the precise role of Rab9A remains unknown. Here, we f...
متن کاملComing or going? Un-BLOC-ing delivery and recycling pathways during melanosome maturation
Melanosome biogenesis requires successive waves of cargo delivery from endosomes to immature melanosomes, coupled with recycling of the trafficking machinery. Dennis et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201605090) report differential roles for BLOC-1 and BLOC-3 complexes in delivery and recycling of melanosomal biogenetic components, supplying directionality to melanosome m...
متن کاملBLOC-1 Brings Together the Actin and Microtubule Cytoskeletons to Generate Recycling Endosomes
Recycling endosomes consist of a tubular network that emerges from vacuolar sorting endosomes and diverts cargoes toward the cell surface, the Golgi, or lysosome-related organelles. How recycling tubules are formed remains unknown. We show that recycling endosome biogenesis requires the protein complex BLOC-1. Mutations in BLOC-1 subunits underlie an inherited disorder characterized by albinism...
متن کاملBLOC-1 and BLOC-3 regulate VAMP7 cycling to and from melanosomes via distinct tubular transport carriers
Endomembrane organelle maturation requires cargo delivery via fusion with membrane transport intermediates and recycling of fusion factors to their sites of origin. Melanosomes and other lysosome-related organelles obtain cargoes from early endosomes, but the fusion machinery involved and its recycling pathway are unknown. Here, we show that the v-SNARE VAMP7 mediates fusion of melanosomes with...
متن کاملBLOC-1 is required for cargo-specific sorting from vacuolar early endosomes toward lysosome-related organelles.
Hermansky-Pudlak syndrome (HPS) is a genetic disorder characterized by defects in the formation and function of lysosome-related organelles such as melanosomes. HPS in humans or mice is caused by mutations in any of 15 genes, five of which encode subunits of biogenesis of lysosome-related organelles complex (BLOC)-1, a protein complex with no known function. Here, we show that BLOC-1 functions ...
متن کامل